Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.

نویسندگان

  • Y Sanchez
  • J Bachant
  • H Wang
  • F Hu
  • D Liu
  • M Tetzlaff
  • S J Elledge
چکیده

In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the abundance of Pds1, an anaphase inhibitor. Unlike other checkpoint mutants, chk1 mutants were only mildly sensitive to DNA damage, indicating that checkpoint functions besides cell cycle arrest influence damage sensitivity. Another kinase, Rad53, was required to both maintain active cyclin-dependent kinase 1, Cdk1(Cdc28), and prevent anaphase entry after checkpoint activation. Evidence suggests that Rad53 exerts its role in checkpoint control through regulation of the Polo kinase Cdc5. These results support a model in which Chk1 and Rad53 function in parallel through Pds1 and Cdc5, respectively, to prevent anaphase entry and mitotic exit after DNA damage. This model provides a possible explanation for the role of Cdc5 in DNA damage checkpoint adaptation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage.

The presence of DNA damage activates a conserved cellular response known as the DNA damage checkpoint pathway. This pathway induces a cell cycle arrest that persists until the damage is repaired. Consequently, the failure to arrest in response to DNA damage is associated with genomic instability. In budding yeast, activation of the DNA damage checkpoint pathway leads to a mitotic cell cycle arr...

متن کامل

Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase.

Rph1, a Cys2-His2 zinc finger protein, binds to an upstream repressing sequence of the photolyase gene PHR1, and represses its transcription in response to DNA damage in Saccharomyces cerevisiae. In this report, we have demonstrated that the phosphorylation of Rph1 protein was increased in response to DNA damage. The DNA damage-induced phosphorylation of Rph1 was missing in most damage checkpoi...

متن کامل

The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage.

A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-ind...

متن کامل

Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks.

The DNA damage checkpoint plays a crucial role in maintaining functional DNA replication forks when cells are exposed to genotoxic agents. In budding yeast, the protein kinases Mec1 (ATR) and Rad53 (Chk2) are especially important in this process. How these kinases act to stabilize DNA replication forks is currently unknown but is likely to have important implications for understanding how genom...

متن کامل

Checkpoint kinases regulate a global network of transcription factors in response to DNA damage.

DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs) are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 286 5442  شماره 

صفحات  -

تاریخ انتشار 1999